Weak Differentiability of Product Measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Differentiability of Product Measures

In this paper, we study cost functions over a finite collection of random variables. For these types of models, a calculus of differentiation is developed that allows us to obtain a closed-form expression for derivatives where “differentiation” has to be understood in the weak sense. The technique for proving the results is new and establishes an interesting link between functional analysis and...

متن کامل

Weak differentiability of solutions to SDEs with semi-monotone drifts

‎In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift‎. ‎To prove this formula‎, ‎we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded‎.

متن کامل

Nowhere Weak Differentiability of the Pettis Integral

For an arbitrary in nite-dimensional Banach space X, we construct examples of strongly-measurable X-valued Pettis integrable functions whose indefinite Pettis integrals are nowhere weakly di erentiable; thus, for these functions the Lebesgue Di erentiation Theorem fails rather spectacularly. We also relate the degree of nondi erentiability of the inde nite Pettis integral to the cotype of X, fr...

متن کامل

weak differentiability of solutions to sdes with semi-monotone drifts

‎in this work we prove malliavin differentiability for the solution to an sde with locally lipschitz and semi-monotone drift‎. ‎to prove this formula‎, ‎we construct a sequence of sdes with globally lipschitz drifts and show that the $p$-moments of their malliavin derivatives are uniformly bounded‎.

متن کامل

A Second Note on Weak Differentiability of Pettis Integrals

In a recent paper the author proved that if Q is any compact metric space containing non-denumerably many points and C(Q) is the Banach space of all continuous functional over ft, then there is a Pettis integrable function from the unit interval to C(0) whose integral fails to be weakly differentiable on a set of positive measure. The purpose of this note is to obtain the same result, assuming ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2010

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.1090.0422